17 resultados para essential fatty acids

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the correlation between macular pigment optical density and plasma levels of lutein, zeaxanthin, and fatty acids, especially omega-3 polyunsaturated fatty acids (PUFAs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutropenic enterocolitis is a potentially fatal complication of myeloablative chemotherapy in patients with acute myeloid leukemia. Omega-3 polyunsaturated fatty acids (PUFA) are precursors of potent anti-inflammatory prostaglandins. Our aim was to explore the safety and effectiveness of omega-3 PUFA added to parenteral nutrition in protecting leukemia patients from severe enterocolitis. Fourteen patients with acute myeloid leukemia who received omega-3 PUFA in a Phase II trial were compared with 66 consecutive control patients not getting this intervention. We performed crude and adjusted comparisons, using inverse probability of treatment weighting for adjusted analysis, and blind outcome assessment to minimize assessor bias. Primary outcome was severe enterocolitis (≥Grade 3). The crude odds ratio of Grade 3 colitis or higher was 1.36 (95% CI 0.37 to 4.96, P = 0.64), and the adjusted odds ratio was 0.79 (95% CI 0.35 to 1.78, P = 0.57). There was little evidence to suggest differences between groups in serious adverse events and overall mortality. Our results provide little evidence that addition of omega-3 PUFA is beneficial in this condition. Routine treatment with omega-3 PUFA is currently not warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cows encounter a state of negative energy balance during the periparturient period, which may lead to metabolic disorders and impaired fertility. The aim of this study was to assess the potential of milk fatty acids as diagnostic tools of detrimental levels of blood plasma nonesterified fatty acids (NEFA), defined as NEFA concentrations beyond 0.6 mmol/L, in a data set of 92 early lactating cows fed a glucogenic or lipogenic diet and subjected to 0-, 30-, or 60-d dry period before parturition. Milk was collected in wk 2, 3, 4, and 8 (n = 368) and blood was sampled weekly from wk 2 to 8 after parturition. Milk was analyzed for milk fatty acids and blood plasma for NEFA. Data were classified as "at risk of detrimental blood plasma NEFA" (NEFA ≥ 0.6 mmol/L) and "not at risk of detrimental blood plasma NEFA" (NEFA <0.6 mmol/L). Concentrations of 45 milk fatty acids and milk fat C18:1 cis-9-to-C15:0 ratio were subjected to a discriminant analysis. Milk fat C18:1 cis-9 revealed the most discriminating variable to identify detrimental blood plasma NEFA. A false positive rate of 10% allowed us to diagnose 46% of the detrimental blood plasma NEFA cases based on a milk fat C18:1 cis-9 concentration of at least 230 g/kg of milk fatty acids. Additionally, it was assessed whether the milk fat C18:1 cis-9 concentrations of wk 2 could be used as an early warning for detrimental blood plasma NEFA risk during the first 8 wk in lactation. Cows with at least 240 g/kg of C18:1 cis-9 in milk fat had about 50% chance to encounter blood plasma NEFA values of 0.6 mmol/L or more during the first 8 wk of lactation, with a false positive rate of 11.4%. Profit simulations were based on costs for cows suffering from detrimental blood plasma NEFA, and costs for preventive treatment based on daily dosing of propylene glycol for 3 wk. Given the relatively low incidence rate (8% of all observations), continuous monitoring of milk fatty acids during the first 8 wk of lactation to diagnose detrimental blood plasma NEFA does not seem cost effective. On the contrary, milk fat C18:1 cis-9 of the second lactation week could be an early warning of cows at risk of detrimental blood NEFA. In this case, selective treatment may be cost effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A subclass of eukaryotic proteins is subject to modification with fatty acids, the most common of which are palmitic and myristic acid. Protein acylation allows association with cellular membranes in the absence of transmembrane domains. Here we examine POMP39, a protein previously described to be present in the outer mitochondrial membrane proteome (POMP) of the protozoan parasite Trypanosoma brucei. POMP39 lacks canonical transmembrane domains, but is likely both myristoylated and palmitoylated on its N-terminus. Interestingly, the protein is also dually localized on the surface of the mitochondrion as well as in the flagellum of both insect-stage and the bloodstream form of the parasites. Upon abolishing of global protein acylation or mutation of the myristoylation site, POMP39 relocates to the cytosol. RNAi-mediated ablation of the protein neither causes a growth phenotype in insect-stage nor bloodstream form trypanosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose It has been shown that lutein and zeaxanthin accumulate in the macula where they enhance contrast sensitivity and may reduce the risk of progression to advanced age-related macular degeneration (AMD). Furthermore, omega-3 long-chain polyunsaturated fatty acids (PUFA) might further reduce this risk. However, controversy exists regarding whether PUFA may reduce the bioavailability of lutein. Methods This was a prospective 12-month, randomized, open label study evaluating the effect of supplementation with lutein, other antioxidants, and minerals on contrast sensitivity (CS) and macular pigment optical density (MPOD) in patients with age-related maculopathy. A total of 79 patients were randomized to either lutein (10 mg) and antioxidant supplement or lutein and antioxidant supplement in combination with PUFA. Patients received supplementation for a period of 6 months and were followed for a total of 12 months. Results Serum lutein and zeaxanthin increased significantly by the first follow-up visit at 1 month, and remained elevated throughout the intervention period of 6 months in the lutein-only group but not in the lutein+PUFA group. Macular pigment optical density and CS increased significantly in the lutein-only group (P < 0.005) but not in the lutein+PUFA group (P = 0.059) compared to baseline. Best-corrected visual acuity remained unchanged during the entire study period in both groups. Conclusions Addition of PUFA may reduce the bioavailability of lutein and therefore lessen the beneficial effect on macular pigment and CS. This needs to be considered when prescribing lutein supplements to patients with low lutein levels. (ClinicalTrials.gov number, NCT00563979.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Keel fractures in the laying hen are the most critical animal welfare issue facing the egg production industry, particularly with the increased use of extensive systems in response to the 2012 EU directive banning conventional battery cages. The current study is aimed at assessing the effects of 2 omega-3 (n3) enhanced diets on bone health, production endpoints, and behavior in free-range laying hens. Data was collected from 2 experiments over 2 laying cycles, each of which compared a (n3) supplemented diet with a control diet. Experiment 1 employed a diet supplemented with a 60:40 fish oil-linseed mixture (n3:n6 to 1.35) compared with a control diet (n3:n6 to 0.11), whereas the n3 diet in Experiment 2 was supplemented with a 40:60 fish oil-linseed (n3:n6 to 0.77) compared to the control diet (n3:n6 to 0.11). The n3 enhanced diet of Experiment 1 had a higher n3:n6 ratio, and a greater proportion of n3 in the long chain (C20/22) form (0.41 LC:SC) than that of Experiment 2 (0.12 LC:SC). Although dietary treatment was successful in reducing the frequency of fractures by approximately 27% in Experiment 2, data from Experiment 1 indicated the diet actually induced a greater likelihood of fracture (odds ratio: 1.2) and had substantial production detriment. Reduced keel breakage during Experiment 2 could be related to changes in bone health as n3-supplemented birds demonstrated greater load at failure of the keel, and tibiae and humeri that were more flexible. These results support previous findings that n3-supplemented diets can reduce fracture likely by increasing bone strength, and that this can be achieved without detriment to production. However, our findings suggest diets with excessive quantities of n3, or very high levels of C20/22, may experience health and production detriments. Further research is needed to optimize the quantity and type of n3 in terms of bone health and production variables and investigate the potential associated mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lipids are important for cell function and survival, but abnormal concentrations may lead to various diseases. Cholesterol homeostasis is greatly dependent on the active transport by membrane proteins, whose activities coordinate lipid status with cellular function. Intestinal Niemann-Pick C1-Like 1 protein (NPC1L1) and scavenger receptor B1 (SR-B1) participate in the uptake of extracellular cholesterol, whereas ATP binding cassette A1 (ABCA1) mediates the efflux of excessive intracellular cholesterol. Caveolin-1 binds cholesterol and fatty acids (FA) and participates in cholesterol trafficking. Sterol response element binding protein-2 (SREBP-2) is a sensor that regulates intracellular cholesterol synthesis. Given that cholesterol is a constituent of chylomicrons, whose synthesis is enhanced with an increased FA supply, we tested the hypothesis that feeding polyunsaturated FA (PUFA)-enriched diets in treatment of canine chronic enteropathies alters the mRNA expression of genes involved in cholesterol homeostasis. Using quantitative reverse transcriptase polymerase chain reaction (RT-PCR), we compared the mRNA abundance of NPC1L1, SR-B1, ABCA1, caveolin-1, and SREBP-2 in duodenal mucosal biopsies of dogs with food-responsive diarrhea (FRD; n=14) and inflammatory bowel disease (IBD; n=7) before and after treatment with cholesterol-free PUFA-enriched diets and in healthy controls (n=14). The abundance of caveolin-1, ABCA1, and SREBP-2 were altered by PUFA-enriched diets (P<0.05), whereas that of NPC1L1 and SR-B1 mRNA remained unchanged. The gene expression of caveolin-1, ABCA1, and SREBP-2 was down-regulated (P<0.05) by PUFA-enriched diets in IBD dogs only. Our results suggest that feeding PUFA-enriched diets may alter cholesterol homeostasis in duodenal mucosal cells of dogs suffering from IBD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Homeorhetic and homeostatic controls in dairy cows are essential for adapting to alterations in physiological and environmental conditions. To study the different mechanisms during adaptation processes, effects of a deliberately induced negative energy balance (NEB) by feed restriction near 100 d in milk (DIM) on performance and metabolic measures were compared with lactation energy deficiency after parturition. Fifty multiparous cows were studied in 3 periods (1=early lactation up to 12 wk postpartum; 2=feed restriction for 3 wk beginning at 98+/-7 DIM with a feed-restricted and control group; and 3=a subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, despite NEB in early lactation [-42 MJ of net energy for lactation (NE(L))/d, wk 1 to 3] up to wk 9, milk yield increased from 27.5+/-0.7 kg to a maximum of 39.5+/-0.8 kg (wk 6). For period 2, the NEB was induced by individual limitation of feed quantity and reduction of dietary energy density. Feed-restricted cows experienced a greater NEB (-63 MJ of NEL/d) than did cows in early lactation. Feed-restricted cows in period 2 showed only a small decline in milk yield of -3.1+/-1.1 kg and milk protein content of -0.2+/-0.1% compared with control cows (30.5+/-1.1 kg and 3.8+/-0.1%, respectively). In feed-restricted cows (period 2), plasma glucose was lower (-0.2+/-0.0 mmol/L) and nonesterified fatty acids higher (+0.1+/-0.1 mmol/L) compared with control cows. Compared with the NEB in period 1, the decreases in body weight due to the deliberately induced NEB (period 2) were greater (56+/-4 vs. 23+/-3 kg), but decreases in body condition score (0.16+/-0.03 vs. 0.34+/-0.04) and muscle diameter (2.0+/-0.4 vs. 3.5+/-0.4 mm) were lesser. The changes in metabolic measures in period 2 were marginal compared with the adjustments directly after parturition in period 1. Despite the greater induced energy deficiency at 100 DIM than the early lactation NEB, the metabolic load experienced by the dairy cows was not as high as that observed in early lactation. The different effects of energy deficiency at the 2 stages in lactation show that metabolic problems in early lactating dairy cows are not due only to the NEB, but mainly to the specific metabolic regulation during this period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ω3-polyunsaturated fatty acids (ω3-PUFAs) are known to exert anti-inflammatory effects in various disease models although their direct targets are only poorly characterized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic inflammation is a fundamental aspect of metabolic disorders such as obesity, diabetes and cardiovascular disease. Cholesterol crystals are metabolic signals that trigger sterile inflammation in atherosclerosis, presumably by activating inflammasomes for IL-1β production. We found here that atherogenesis was mediated by IL-1α and we identified fatty acids as potent inducers of IL-1α-driven vascular inflammation. Fatty acids selectively stimulated the release of IL-1α but not of IL-1β by uncoupling mitochondrial respiration. Fatty acid-induced mitochondrial uncoupling abrogated IL-1β secretion, which deviated the cholesterol crystal-elicited response toward selective production of IL-1α. Our findings delineate a previously unknown pathway for vascular immunopathology that links the cellular response to metabolic stress with innate inflammation, and suggest that IL-1α, not IL-1β, should be targeted in patients with cardiovascular disease.